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Abstract

The Bose-Hubbard model effectively describes bosons on a lattice with on-site interactions
and nearest-neighbour hopping, serving as a foundational framework for understanding strong
particle interactions and the superfluid to Mott insulator transition. We present a result
establishing the validity of a mean-field approximation for the dynamics of quantum systems in
high dimension, using the Bose-Hubbard model on a square lattice as a case study. Our result is
a trace norm estimate between the one-lattice-site reduced density of the Schréodinger dynamics
and the mean-field dynamics in the limit of large dimension.

Motivations

Goal: rigorously derives large dimensional mean field limits since claim from physics literature:
mean field theory exact in d = +o0.

Usual many-body N — o0 mean field:
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Bose-Hubbard model: interacting bosons on a lattice

e Simple mathematical description: finite lattice model

e Great success in physics: description of Mott-insulator \ Superfluid phase transition
experimental observation [2] and theoretical description of mean field theory [1]

e Numerics shows mean field already effective in d = 3

Result: [3]



e Convergence of the many-body dynamics to the mean field dynamics when d — o
e Describe a phase transition

e Strong particle interactions

Bose-Hubbard model

Lattice: A = (Z/LZ)" with d, L € N such that d, L > 2 of volume |A| =
One-lattice-site Hilbert space: ¢?(C) of canonical basis |n) = (0,...,0, 1 ,0,...),neN

24 quantization: creation and annihilation operators:
al0) =0 VneN* aln):=+nln—-1),
¥neN, al|n) =+n+1|n+1)
[a,aT] =1 (CCR)
Particle number: A == a'a
Fock space:
F = 0(C)®¥N =~ 7, (L*(A,C)) = @ L*(A,C)%+"
neN
Indeed:

Fi (L*(A,C)) = (@C> R F,(C) = £2(C)#N
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If A is an operator on ¢*(C) and = € A denote A, the operator on F acting on site x as A
and as identity on other sites.

Bose-Hubbard hamiltonian of parameters J, u, U € R:
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Mean field with respect to sites interactions and not particle interactions due to large
coordinence number.

Dynamics for 74 € L* (Ry, L (F)):
i074(t) = [Ha,7a(t)] (B-H)

First one-lattice-site reduced density matrix:
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Mean field theory

Mean field hamiltonian for ¢ € £2(C):

h? =

with the order parameter

ap = (plap)

Phase transition: Decompose

P = ZAn|n>  Qp = Z\/mA_nAn-&-l

neN neN

e Mott Insulator (MI): o, = 0
e Superfluid (SF): o, > 0

Dynamics

FOI' 2 € LOO (R+7 £2<C)>7

i0p(t) = hPWp(t) (mf)

Corresponding projection

P =) (@] qo=1—p,

Main result

Theorem .1: S.Farhat D.P S.Petrat 2025
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Figure 1: Mott insulator \ Superfluid phase
diagram obtained by minimizing ¢ —
(elh?p)[1]

Assume

e 74 solves (B-H) with v4(0) € £ (F) such that Tr (74(0)) = 1
e ¢ solves (mf) with p(0) € £2(C) such that ||¢[,. =1

e Jcy,co > 0 such that Vn e N,
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Then 3 C == C (J, ¢, ¢2, Tr (p,(0)N)) > 0 such that ¥t € Ry,

| @ = o)
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1£ |[147(0) = p,(0)

o= O (é), then Vt e R,
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Proof relies on propagation of moments of N/

Article has another result without the double exponential in ¢ working with less assumptions
on initial moments but requiring U > 0

Well-posedness of the mean field equation treated

Further works: improve error with corrections to the dynamics to get something small
when d =3

Convergence of the order parameter: since a < N + 1 Insert a cut-off
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—0 when M —o0 since the particle numbers are conserved

Any choice of M >» 1 such that M nyc(ll) — Py « 1 as d — oo is sufficient to prove that
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Sketch of the proof

e Propagation of moments of N:
Tt (po(OAN®) < (Tt (po(O)A*) + k¥) €D,

and same for Tr (’yc(ll)(t)N ’“)



o Gronwall estimate tentative

ot (a:)| < 0| T (30ap) + T (0740) " T (100, W 4 1) g )" 4
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Insert cut-off Inrcpr+Lar=>nr

since

H%(il) — Dy <A [Tr <7c(ll)q‘P)

l:l
e Controlling large N terms

Tr (”Y((il)qw (N—I— 1) ]INZMC]@> < eC(tJrl)fMe*C(hH) 0

M—o0

e Close Gronwall and optimize in M.
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